Keysight Technologies, UCSD demonstrate 28 GHz 5G band, bidirectional phased-array

Keysight Technologies, Inc. (NYSE: KEYS) and the University of California San Diego have announced the world´s fastest bidirectional phased-array link in the 28 GHz 5G band, the companies said.

The achievement is an important milestone for delivering future applications in 5G, aerospace and defense.

The demonstration included a 64-element array that achieved a data rate of 12 Gbps at 0 degrees and more than 8 Gbps over all scan angles up to ±50 degrees in azimuth and +/-25 degrees in elevation at a link distance of 300 meters. The array produced data rates of up to 18 Gbps at shorter distances.

The bit-error-rate was less than 10-7 at maximum scan angles. The results did not rely on any calibration on the 64-element phased-array, thereby greatly reducing implementation costs.

The 64-element phased array, built on a low-cost printed-circuit board, only consumed approximately 7-11 W of DC power in either its transmit (Tx) or receive (Rx) modes thanks to the UC San Diego high-performance system-on-a-chip (SoC) designs that uses a third-generation silicon germanium (SiGe BiCMOS SBC18H3) process from TowerJazz.

UC San Diego used Keysight´s Signal Studio software to define and generate the 16-QAM and 64-QAM waveforms, with single and multiple carriers. Keysight´s 81199A Wideband Waveform Center software helped the team link the Tx and Rx units as well as improve the error vector magnitude (EVM) performance. The team also used Keysight´s 89600 VSA software to perform demodulation, channel equalization and analysis of advanced signals.

Keysight´s M8195A arbitrary waveform generator, E8267D PSG vector signal generator and DSOS804A high-definition oscilloscope were used to enable rapid prototyping as well as link equalization and state-of-the-art performance measurements across modulation bandwidths of up to 3 GHz frequencies.

Keysight Technologies is a technology company that helps its engineering, enterprise and service provider customers optimize networks and bring electronic products to market faster and at a lower cost. Keysight´s solutions go where the electronic signal goes, from design simulation, to prototype validation, to manufacturing test, to optimization in networks and cloud environments.

The University of California San Diego is one of the universities in mixed-signal, microwave and mm-wave RFICs, digital communications, applied electromagnetics, optics and nano-electronics research, and is home to the Center for Wireless Communications.